--- Welcome to the official ADCIRCWiki site! The site is currently under construction, with limited information. ---

# Difference between revisions of "Generalized Asymmetric Holland Model"

The Generalized Asymmetric Holland Model

1. markdown file for GAHM on ADCIRCWIKI

GAHM Introduction Content

## Case Studies

### Multiple-Isotach Approach

The gradient wind Equation describes a steady flow balanced by the horizontal pressure gradient force, the centripetal acceleration, and the Coriolis acceleration:

$\displaystyle \frac{\nu^2}{r} + f\nu - \frac{1}{\rho_0}\dfrac{\partial p}{\partial r} = 0 \quad$ (1)

$\displaystyle P(r) = P_c + (P_n - P_c)e^{-A/r^B} \quad$ (2)

$\displaystyle V_g(r) = \sqrt{AB(P_n - P_c)e^{-A/r^B}/\rho r^B + (\frac{rf}{2})^2} - \frac{rf}{2} \quad$ (3)

$\displaystyle V_c(r) = \sqrt{AB(P_n - P_c)e^{-A/r^B}/\rho r^B} \quad$ (4)

$\displaystyle A = (R_{max})^B \quad$

$\displaystyle B = (V_{max})^2\rho e/(P_n - P_c) \quad$

$\displaystyle P(r) = P_c + (P_n - P_c)e^{-(R_{max}/r)^B} \quad$

$\displaystyle V_g(r) = \sqrt{(V_{max})^2e^{1-(R_{max}/r)^B}(R_{max}/r)^B + (\frac{rf}{2})^2} - \frac{rf}{2} \quad$

$\displaystyle R_0 = frac{V_{max}}{R_{max}f} \quad$

$\displaystyle B_g = (V_{max}^2 + V_{max}R{max}f)\rho e^\psi/\psi(P_n - P_c) = B \frac{(1+1/R_0)e^{\psi - 1}}{\psi} \quad$

$\displaystyle \quad$

$\displaystyle \quad$

$\displaystyle \quad$

$\displaystyle \quad$

$\displaystyle \quad$

$\displaystyle \quad$

$\displaystyle \quad$

The Holland Model (1980) is an analytic model that depicts the radial wind and pressure profiles of a hurricane. Starts

$\displaystyle \cos a$