--- Welcome to the official ADCIRCWiki site! The site is currently under construction, with limited information. ---

# Generalized Asymmetric Holland Model: Difference between revisions

The Generalized Asymmetric Holland Model

1. markdown file for GAHM on ADCIRCWIKI

GAHM Introduction Content

## Case Studies

### Multiple-Isotach Approach

The gradient wind Equation describes a steady flow balanced by the horizontal pressure gradient force, the centripetal acceleration, and the Coriolis acceleration:

${\frac {\nu ^{2}}{r}}+f\nu -{\frac {1}{\rho _{0}}}{\dfrac {\partial p}{\partial r}}=0\quad$ (1)

$P(r)=P_{c}+(P_{n}-P_{c})e^{-A/r^{B}}\quad$ (2)

$V_{g}(r)={\sqrt {AB(P_{n}-P_{c})e^{-A/r^{B}}/\rho r^{B}+({\frac {rf}{2}})^{2}}}-{\frac {rf}{2}}\quad$ (3)

$V_{c}(r)={\sqrt {AB(P_{n}-P_{c})e^{-A/r^{B}}/\rho r^{B}}}\quad$ (4)

$A=(R_{max})^{B}\quad$ $B=(V_{max})^{2}\rho e/(P_{n}-P_{c})\quad$ $P(r)=P_{c}+(P_{n}-P_{c})e^{-(R_{max}/r)^{B}}\quad$ $V_{g}(r)={\sqrt {(V_{max})^{2}e^{1-(R_{max}/r)^{B}}(R_{max}/r)^{B}+({\frac {rf}{2}})^{2}}}-{\frac {rf}{2}}\quad$ $R_{0}=frac{V_{max}}{R_{max}f}\quad$ $B_{g}=(V_{max}^{2}+V_{max}R{max}f)\rho e^{\psi }/\psi (P_{n}-P_{c})=B{\frac {(1+1/R_{0})e^{\psi -1}}{\psi }}\quad$ $\quad$ $\quad$ $\quad$ $\quad$ $\quad$ $\quad$ $\quad$  The Holland Model (1980) is an analytic model that depicts the radial wind and pressure profiles of a hurricane. Starts $\cos a$ 