--- Welcome to the official ADCIRCWiki site! The site is currently under construction, with limited information. ---
For general information, see the ADCIRC site, ADCIRC FAQ, or the ADCIRC Wikipedia page. For model documentation not yet available on the wiki, see the ADCIRC site. New content is being continuously added to the ADCIRCWiki, and material from the main ADCIRC site will be gradually transitioned over to the wiki.

Difference between revisions of "Generalized Asymmetric Holland Model"

From ADCIRCWiki
Jump to: navigation, search
m
Line 1: Line 1:
 
The Generalized Asymmetric Holland Model
 
The Generalized Asymmetric Holland Model
 +
 +
# markdown file for GAHM on ADCIRCWIKI
 +
GAHM Introduction
 +
Content
 +
== The Classic Holland Model ==
 +
== Derivation of the GAHM ==
 +
== Azimuthally-Varying RMW ==
 +
== A Linearly-weighted Composite Wind Method ==
 +
== Case Studies ==
 +
=== Single-Isotach Approach ===
 +
=== Multiple-Isotach Approach ===
 +
 +
The gradient wind Equation describes a steady flow balanced by the horizontal pressure gradient force, the centripetal acceleration, and the Coriolis acceleration:
 +
 +
<math> \frac{\nu^2}{r} + f\nu - \frac{1}{\rho_0}\dfrac{\partial p}{\partial r} = 0 \quad</math> (1)
 +
 +
<math> P(r) = P_c + (P_n - P_c)e^{-A/r^B} \quad </math> (2)
 +
 +
<math> V_g(r) = \sqrt{AB(P_n - P_c)e^{-A/r^B}/\rho r^B + (\frac{rf}{2})^2} - \frac{rf}{2} \quad </math> (3)
 +
 +
<math> V_c(r) = \sqrt{AB(P_n - P_c)e^{-A/r^B}/\rho r^B} \quad </math> (4)
 +
 +
<math> A = (R_{max})^B \quad </math>
 +
 +
<math> B = (V_{max})^2\rho e/(P_n - P_c) \quad </math>
 +
 +
<math> P(r) = P_c + (P_n - P_c)e^{-(R_{max}/r)^B} \quad </math>
 +
 +
<math> V_g(r) = \sqrt{(V_{max})^2e^{1-(R_{max}/r)^B}(R_{max}/r)^B + (\frac{rf}{2})^2} - \frac{rf}{2} \quad </math>
 +
 +
<math> R_0 = frac{V_{max}}{R_{max}f} \quad </math>
 +
 +
<math> B_g = (V_{max}^2 + V_{max}R{max}f)\rho e^\psi/\psi(P_n - P_c) = B \frac{(1+1/R_0)e^{\psi - 1}}{\psi} \quad </math>
 +
 +
<math> \quad </math>
 +
 +
<math> \quad </math>
 +
 +
<math> \quad </math>
 +
 +
<math> \quad </math>
 +
 +
<math> \quad </math>
 +
 +
<math> \quad </math>
 +
 +
<math> \quad </math>
 +
 +
<math> </math>
 +
 +
The Holland Model (1980) is an analytic model that depicts the radial wind and pressure profiles of a hurricane. Starts
 +
 +
 +
<math> </math>
 +
<math> \cos a </math>

Revision as of 20:01, 27 March 2020

The Generalized Asymmetric Holland Model

  1. markdown file for GAHM on ADCIRCWIKI

GAHM Introduction Content

The Classic Holland Model

Derivation of the GAHM

Azimuthally-Varying RMW

A Linearly-weighted Composite Wind Method

Case Studies

Single-Isotach Approach

Multiple-Isotach Approach

The gradient wind Equation describes a steady flow balanced by the horizontal pressure gradient force, the centripetal acceleration, and the Coriolis acceleration:

Failed to parse (MathML with SVG or PNG fallback (recommended for modern browsers and accessibility tools): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle \frac{\nu^2}{r} + f\nu - \frac{1}{\rho_0}\dfrac{\partial p}{\partial r} = 0 \quad} (1)

Failed to parse (MathML with SVG or PNG fallback (recommended for modern browsers and accessibility tools): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle P(r) = P_c + (P_n - P_c)e^{-A/r^B} \quad } (2)

Failed to parse (MathML with SVG or PNG fallback (recommended for modern browsers and accessibility tools): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle V_g(r) = \sqrt{AB(P_n - P_c)e^{-A/r^B}/\rho r^B + (\frac{rf}{2})^2} - \frac{rf}{2} \quad } (3)

Failed to parse (MathML with SVG or PNG fallback (recommended for modern browsers and accessibility tools): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle V_c(r) = \sqrt{AB(P_n - P_c)e^{-A/r^B}/\rho r^B} \quad } (4)

Failed to parse (MathML with SVG or PNG fallback (recommended for modern browsers and accessibility tools): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle A = (R_{max})^B \quad }

Failed to parse (MathML with SVG or PNG fallback (recommended for modern browsers and accessibility tools): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle B = (V_{max})^2\rho e/(P_n - P_c) \quad }

Failed to parse (MathML with SVG or PNG fallback (recommended for modern browsers and accessibility tools): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle P(r) = P_c + (P_n - P_c)e^{-(R_{max}/r)^B} \quad }

Failed to parse (MathML with SVG or PNG fallback (recommended for modern browsers and accessibility tools): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle V_g(r) = \sqrt{(V_{max})^2e^{1-(R_{max}/r)^B}(R_{max}/r)^B + (\frac{rf}{2})^2} - \frac{rf}{2} \quad }

Failed to parse (MathML with SVG or PNG fallback (recommended for modern browsers and accessibility tools): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle R_0 = frac{V_{max}}{R_{max}f} \quad }

Failed to parse (MathML with SVG or PNG fallback (recommended for modern browsers and accessibility tools): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle B_g = (V_{max}^2 + V_{max}R{max}f)\rho e^\psi/\psi(P_n - P_c) = B \frac{(1+1/R_0)e^{\psi - 1}}{\psi} \quad }

Failed to parse (MathML with SVG or PNG fallback (recommended for modern browsers and accessibility tools): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle \quad }

Failed to parse (MathML with SVG or PNG fallback (recommended for modern browsers and accessibility tools): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle \quad }

Failed to parse (MathML with SVG or PNG fallback (recommended for modern browsers and accessibility tools): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle \quad }

Failed to parse (MathML with SVG or PNG fallback (recommended for modern browsers and accessibility tools): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle \quad }

Failed to parse (MathML with SVG or PNG fallback (recommended for modern browsers and accessibility tools): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle \quad }

Failed to parse (MathML with SVG or PNG fallback (recommended for modern browsers and accessibility tools): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle \quad }

Failed to parse (MathML with SVG or PNG fallback (recommended for modern browsers and accessibility tools): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle \quad }


The Holland Model (1980) is an analytic model that depicts the radial wind and pressure profiles of a hurricane. Starts


Failed to parse (MathML with SVG or PNG fallback (recommended for modern browsers and accessibility tools): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle \cos a }