--- Welcome to the official ADCIRCWiki site! The site is currently under construction, with limited information. ---
For general information, see the ADCIRC site, ADCIRC FAQ, or the ADCIRC Wikipedia page. For model documentation not yet available on the wiki, see the ADCIRC site. New content is being continuously added to the ADCIRCWiki, and material from the main ADCIRC site will be gradually transitioned over to the wiki.

Difference between revisions of "Wind Stress"

From ADCIRCWiki
Jump to: navigation, search
(Added basics of overland/over-water, wind heights, and wind averaging times.)
(Added z0 info)
Line 8: Line 8:
  
 
ADCIRC generally expects 10-meter, 10-minute winds at their actual exposure, although the exact expectations vary depending on the input type. For instance, when Holland-type wind inputs are provided (e.g. <code>NWS=8</code> or <code>NWS=20</code>), the wind speed is expected to be the '''1-minute [https://en.wikipedia.org/wiki/Maximum_sustained_wind maximum sustained wind]''' at 10 meters elevation. If marine-exposure winds are provided, then [[Fort.13_file#Surface_Roughness|surface roughness]] reductions may be needed
 
ADCIRC generally expects 10-meter, 10-minute winds at their actual exposure, although the exact expectations vary depending on the input type. For instance, when Holland-type wind inputs are provided (e.g. <code>NWS=8</code> or <code>NWS=20</code>), the wind speed is expected to be the '''1-minute [https://en.wikipedia.org/wiki/Maximum_sustained_wind maximum sustained wind]''' at 10 meters elevation. If marine-exposure winds are provided, then [[Fort.13_file#Surface_Roughness|surface roughness]] reductions may be needed
<ref>Simiu, E., Scanlan, R.H., 1996. Wind effects on structures: fundamentals and applications to design, 3rd ed. ed. John Wiley, New York.</ref>
+
<ref name="simiu1996">Simiu, E., Scanlan, R.H., 1996. Wind effects on structures: fundamentals and applications to design, 3rd ed. ed. John Wiley, New York.</ref>
<ref>Simiu, E., Yeo, D., 2018. Wind effects on structures: modern structural design for wind, Fourth edition. ed. John Wiley & Sons, Hoboken, NJ.</ref>
+
<ref name="simiu2018">Simiu, E., Yeo, D., 2018. Wind effects on structures: modern structural design for wind, Fourth edition. ed. John Wiley & Sons, Hoboken, NJ.</ref>
 
. If winds are provided with a different averaging time, then an appropriate correction may be needed, though winds with averaging times of 10 to 60 minutes are generally considered to be quite similar; this is the so-called mesoscale gap. For recommendations on wind time-scale conversions not handled internally by ADCIRC, for tropical cyclones, see the WMO guidelines of Harper et al.
 
. If winds are provided with a different averaging time, then an appropriate correction may be needed, though winds with averaging times of 10 to 60 minutes are generally considered to be quite similar; this is the so-called mesoscale gap. For recommendations on wind time-scale conversions not handled internally by ADCIRC, for tropical cyclones, see the WMO guidelines of Harper et al.
 
<ref name="wmotcaveraging">Harper, B., Kepert, J., Ginger, J., 2010. Guidelines for converting between various wind averaging periods in tropical cyclone conditions (No. WMO/TD-No. 1555). WMO, Geneva, Switzerland.</ref>
 
<ref name="wmotcaveraging">Harper, B., Kepert, J., Ginger, J., 2010. Guidelines for converting between various wind averaging periods in tropical cyclone conditions (No. WMO/TD-No. 1555). WMO, Geneva, Switzerland.</ref>
 
.  
 
.  
 +
 +
== Roughness Reductions ==
 +
Reductions in wind speed to convert to the appropriate exposure come from a logarithmic boundary layer formulation (see, e.g. <ref name="simiu1996" /> <ref name="simiu2018" />) to determine a fraction <math>f</math> to reduce the winds,
 +
:<math>f=\left ( \frac{z_{0l}}{z_{0m}}\right ) ^{0.0706} \left ( \frac{\ln \frac{10}{z_{0l}}}{\ln \frac{10}{z_{0m}}} \right ) </math>
 +
for marine roughness length <math>z_{0m}</math> and reduced ("land") roughness length <math>z_{0l}</math>.  Wind speed is then reduced as,
 +
:<math>\mathbf{w}'=f\mathbf{w}=f\cdot [u,v]</math>
 +
for x- and y- wind vector components <math>u</math> and <math>v</math>. The marine roughness length is,
 +
:<math>z{0m}=\frac{0.018}{g} \left \Vert \mathbf{w} \right \| </math>
 +
for acceleration due to gravity <math>g</math>.  As previously noted, the reduced ("land") roughness length <math>z_{0l}</math> is specified by the user via the [[Fort.13_file#Surface_Roughness|surface roughness]] nodal attribute. The fraction <math>f</math> is bounded on <math>[0,1]</math>, meaning the winds cannot be increased, nor change direction.
 +
 +
=== Older Behavior ===
 +
{{ADC version|version=54|relation=lt}}Note that before version 54, there was a bug in this calculation. The mistake and its effects are addressed in this PDF document: <u>'''ADD A LINK TO A PDF HERE YOOOOO'''</u>. 
 +
 +
== Conversion to Wind Stress ==
 +
In ADCIRC, two formulations are available to convert wind speeds to the wind stresses applied in the momentum equations.  The default is the Garratt formulation,
 +
<ref>Garratt, J.R., 1977. Review of Drag Coefficients over Oceans and Continents. Mon. Wea. Rev. 105, 915–929. https://doi.org/10.1175/1520-0493(1977)105<0915:RODCOO>2.0.CO;2</ref>
 +
and an alternative is the Powell formulation
 +
<ref>Powell, M.D., Vickery, P.J., Reinhold, T.A., 2003. Reduced drag coefficient for high wind speeds in tropical cyclones. Nature 422, 279–283. https://doi.org/10.1038/nature01481</ref>
 +
.
 +
=== Parameter Summary ===
  
 
==References==
 
==References==
 
<references />
 
<references />

Revision as of 17:41, 11 May 2020

When wind blows over the water, it exerts a shear stress at the water surface that transfers horizontal momentum vertically downward across the air–sea interface, driving circulation. In ADCIRC, wind stress is an input forcing term, with several different formats provided. See the NWS parameter for available formats. In most cases, the exact wind stress to be applied to the model is not provided, therefore ADCIRC must determine how to convert a given wind speed to the actual stress applied at the ocean surface. This page covers the various aspects of this process, as well as the options available to the user.

Definition of Winds

The characteristics of wind forcing are often broken down in three ways:

  1. Whether the winds are considered to be over-water (termed "marine exposure") or over-land
  2. The elevation above the sea (or ground) surface of the winds
  3. The time-averaging (if any) that has been applied

ADCIRC generally expects 10-meter, 10-minute winds at their actual exposure, although the exact expectations vary depending on the input type. For instance, when Holland-type wind inputs are provided (e.g. NWS=8 or NWS=20), the wind speed is expected to be the 1-minute maximum sustained wind at 10 meters elevation. If marine-exposure winds are provided, then surface roughness reductions may be needed [1] [2] . If winds are provided with a different averaging time, then an appropriate correction may be needed, though winds with averaging times of 10 to 60 minutes are generally considered to be quite similar; this is the so-called mesoscale gap. For recommendations on wind time-scale conversions not handled internally by ADCIRC, for tropical cyclones, see the WMO guidelines of Harper et al. [3] .

Roughness Reductions

Reductions in wind speed to convert to the appropriate exposure come from a logarithmic boundary layer formulation (see, e.g. [1] [2]) to determine a fraction to reduce the winds,

for marine roughness length and reduced ("land") roughness length . Wind speed is then reduced as,

for x- and y- wind vector components and . The marine roughness length is,

for acceleration due to gravity . As previously noted, the reduced ("land") roughness length is specified by the user via the surface roughness nodal attribute. The fraction is bounded on , meaning the winds cannot be increased, nor change direction.

Older Behavior

ADCIRC version: < 54

Note that before version 54, there was a bug in this calculation. The mistake and its effects are addressed in this PDF document: ADD A LINK TO A PDF HERE YOOOOO.

Conversion to Wind Stress

In ADCIRC, two formulations are available to convert wind speeds to the wind stresses applied in the momentum equations. The default is the Garratt formulation, [4] and an alternative is the Powell formulation [5] .

Parameter Summary

References

  1. 1.0 1.1 Simiu, E., Scanlan, R.H., 1996. Wind effects on structures: fundamentals and applications to design, 3rd ed. ed. John Wiley, New York.
  2. 2.0 2.1 Simiu, E., Yeo, D., 2018. Wind effects on structures: modern structural design for wind, Fourth edition. ed. John Wiley & Sons, Hoboken, NJ.
  3. Harper, B., Kepert, J., Ginger, J., 2010. Guidelines for converting between various wind averaging periods in tropical cyclone conditions (No. WMO/TD-No. 1555). WMO, Geneva, Switzerland.
  4. Garratt, J.R., 1977. Review of Drag Coefficients over Oceans and Continents. Mon. Wea. Rev. 105, 915–929. https://doi.org/10.1175/1520-0493(1977)105<0915:RODCOO>2.0.CO;2
  5. Powell, M.D., Vickery, P.J., Reinhold, T.A., 2003. Reduced drag coefficient for high wind speeds in tropical cyclones. Nature 422, 279–283. https://doi.org/10.1038/nature01481